Formation and coarsening of Ag(110) bilayer islands on NiAl(110): STM analysis and atomistic lattice-gas modeling
نویسندگان
چکیده
Scanning tunneling microscopy analysis of the initial stages of film growth during deposition of Ag on NiAl(110) reveals facile formation of bilayer Ag(110) islands at temperatures of 130 K and above. Annealing subsequent to deposition at 130 K induces coarsening of the bilayer island distribution. The thermodynamic driving force for bilayer island formation reflects a lower relative surface energy for films of even layer thicknesses. This feature derives from quantum size effects due to electron confinement in the Ag film. The kinetics of island formation and relaxation is controlled by terrace and edge-diffusion barriers, detachment barriers, interlayer diffusion barriers, and layer-dependent adsorption and interaction energies. These key energies are determined from density-functional theory analysis and incorporated into an atomistic lattice-gas model for homogeneous island formation, where specification of the adatom hop rates is consistent with detailed balance. Model analysis via kinetic Monte Carlo simulation elucidates the role of strongly anisotropic interactions in development during deposition of elongated island growth shapes and also in facilitating upward mass transport needed for bilayer island formation. The model succeeds in recovering island densities at lower temperatures but experimental densities exceed model predictions at higher temperatures plausibly due to heterogeneous nucleation at surface defects. The same model successfully describes postdeposition coarsening of small islands grown at 130 K.
منابع مشابه
Kinetics of facile bilayer island formation at low temperature: Ag/NiAl(110).
Facile nucleation and growth of bilayer Ag(110) islands on NiAl(110) is observed by STM for Ag deposition at temperatures as low as 127 K. Density functional theory analysis for supported Ag films determines adatom adsorption energies (which favor bilayer islands), interaction energies, and diffusion barriers. Analysis of an atomistic lattice-gas model incorporating these energies elucidates th...
متن کاملFrom Initial to Late Stages of Epitaxial Thin Film Growth: STM Analysis and Atomistic or CoarseGrained Modeling
Epitaxial thin film growth by vapor deposition or molecular beam epitaxy under ultra‐high vacuum conditions generally occurs in two stages: (i) nucleation and growth of well‐separated islands on the substrate; (ii) subsequent formation of a thicker continuous film with possible kinetic roughening. For homoepitaxial growth, two‐dimensional (2D) monolayer islands are formed during submonolayer de...
متن کاملSelf-assembly of metal nanostructures on binary alloy surfaces.
Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently...
متن کاملFormation of Irregular Al Islands by Room-Temperature Deposition on NiAl(110)
STM studies reveal that irregular non-equilibrium two-dimensional AI islands form during deposition of AI on NiAI(IIO) at 300 K. These structures reflect the multiple adsorption sites and diffusion paths available for AI adatoms on the binary alloy surface, as well as the details of inhibited edge diffusion and detachment-attachment kinetics of AI adatoms for numerous distinct step edge configu...
متن کاملTemperature-dependent growth shapes of Ni nanoclusters on NiAl(110).
Scanning tunneling microscopy studies reveal that two-dimensional nanoscale Ni islands formed by deposition of Ni on NiAl(110) between 200-400 K exhibit far-from-equilibrium growth shapes which change systematically with temperature. Island structure reflects the two types of adsorption sites available for Ni adatoms, and island shapes are controlled by the details of adatom diffusion along isl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017